原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.chebyshev.chebint.html
校对:(虚位以待)
numpy.polynomial.chebyshev.
chebint
(c, m=1, k=[], lbnd=0, scl=1, axis=0)[source]集成Chebyshev系列。
返回沿轴从lbnd积分m次的切比雪夫系数c。在每次迭代中,通过scl将所得到的系列相乘,并且添加积分常数k。缩放因子用于变量的线性变化。(“买方谨慎”:请注意,根据所做的操作,可能希望scl是所期望的倒数;有关详细信息,请参阅下面的“注释”部分。The argument c is an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series T_0 + 2*T_1 + 3*T_2
while [[1,2],[1,2]] represents 1*T_0(x)*T_0(y) + 1*T_1(x)*T_0(y) + 2*T_0(x)*T_1(y) + 2*T_1(x)*T_1(y)
if axis=0 is x
and axis=1 is y
.
参数: | c:array_like
m:int,可选
k:{[],list,scalar},可选
lbnd:标量,可选
scl:标量,可选
axis:int,可选
|
---|---|
返回: | S:ndarray
|
上升: | ValueError
|
也可以看看
笔记
请注意,每次积分的结果乘乘以scl。为什么这一点很重要?假设变量在相对于x的积分中进行线性变化。然后.. math :: dx = du / a,因此需要设置scl等于 - 也许不是一开始就想到的。
还要注意,一般来说,集成C系列的结果需要“重新投射”到C系列基本集上。因此,通常,该函数的结果是“不直观的”,虽然正确;请参阅下面的示例部分。
例子
>>> from numpy.polynomial import chebyshev as C
>>> c = (1,2,3)
>>> C.chebint(c)
array([ 0.5, -0.5, 0.5, 0.5])
>>> C.chebint(c,3)
array([ 0.03125 , -0.1875 , 0.04166667, -0.05208333, 0.01041667,
0.00625 ])
>>> C.chebint(c, k=3)
array([ 3.5, -0.5, 0.5, 0.5])
>>> C.chebint(c,lbnd=-2)
array([ 8.5, -0.5, 0.5, 0.5])
>>> C.chebint(c,scl=-2)
array([-1., 1., -1., -1.])