原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.laguerre.lagder.html
校对:(虚位以待)
numpy.polynomial.laguerre.
lagder
(c, m=1, scl=1, axis=0)[source]区分Laguerre系列。
返回沿轴的Laguerre系数c微分m在每次迭代时,结果乘以scl(比例因子用于变量的线性变化)。The argument c is an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series 1*L_0 + 2*L_1 + 3*L_2
while [[1,2],[1,2]] represents 1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) + 2*L_0(x)*L_1(y) + 2*L_1(x)*L_1(y)
if axis=0 is x
and axis=1 is y
.
参数: | c:array_like
m:int,可选
scl:标量,可选
axis:int,可选
|
---|---|
返回: | der:ndarray
|
也可以看看
笔记
一般来说,区分Laguerre系列的结果不像功率系列上的相同操作。因此,这个函数的结果可能是“不直观的”,虽然正确;请参阅下面的示例部分。
例子
>>> from numpy.polynomial.laguerre import lagder
>>> lagder([ 1., 1., 1., -3.])
array([ 1., 2., 3.])
>>> lagder([ 1., 0., 0., -4., 3.], m=2)
array([ 1., 2., 3.])