原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.laguerre.lagvander.html
校对:(虚位以待)
numpy.polynomial.laguerre.
lagvander
(x, deg)[source]给定程度的伪Vandermonde矩阵。
返回度为deg和采样点x的伪Vandermonde矩阵。伪Vandermonde矩阵定义为
其中0 。V的前导索引x的元素,最后一个索引是Laguerre多项式的度。
如果c是长度n + 1和V的系数的1-D数字组是数组t4> = lagvander(x, n)
,则t9> c)
和lagval(x, c)
这种等价性对于最小二乘拟合和用于评估大量具有相同程度和样本点的拉盖尔系数是有用的。
参数: | x:array_like
deg:int
|
---|---|
返回: | vander:ndarray
|
例子
>>> from numpy.polynomial.laguerre import lagvander
>>> x = np.array([0, 1, 2])
>>> lagvander(x, 3)
array([[ 1. , 1. , 1. , 1. ],
[ 1. , 0. , -0.5 , -0.66666667],
[ 1. , -1. , -1. , -0.33333333]])