原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.legendre.legint.html
校对:(虚位以待)
numpy.polynomial.legendre.
legint
(c, m=1, k=[], lbnd=0, scl=1, axis=0)[source]集成Legendre系列。
从lbnd沿轴返回累积m次的Legendre系数c。在每次迭代中,通过scl将所得到的系列相乘,并且添加积分常数k。缩放因子用于变量的线性变化。(“买方谨慎”:请注意,根据用户的操作,可能希望scl是所期望的倒数;有关详细信息,请参阅下面的“注释”部分。The argument c is an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series L_0 + 2*L_1 + 3*L_2
while [[1,2],[1,2]] represents 1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) + 2*L_0(x)*L_1(y) + 2*L_1(x)*L_1(y)
if axis=0 is x
and axis=1 is y
.
参数: | c:array_like
m:int,可选
k:{[],list,scalar},可选
lbnd:标量,可选
scl:标量,可选
axis:int,可选
|
---|---|
返回: | S:ndarray
|
上升: | ValueError
|
也可以看看
笔记
请注意,每次积分的结果乘乘以scl。为什么这一点很重要?假设变量在相对于x的积分中进行线性变化。然后.. math :: dx = du / a,因此需要设置scl等于 - 也许不是一开始就想到的。
还要注意,一般来说,集成C系列的结果需要“重新投射”到C系列基本集上。因此,通常,该函数的结果是“不直观的”,虽然正确;请参阅下面的示例部分。
例子
>>> from numpy.polynomial import legendre as L
>>> c = (1,2,3)
>>> L.legint(c)
array([ 0.33333333, 0.4 , 0.66666667, 0.6 ])
>>> L.legint(c, 3)
array([ 1.66666667e-02, -1.78571429e-02, 4.76190476e-02,
-1.73472348e-18, 1.90476190e-02, 9.52380952e-03])
>>> L.legint(c, k=3)
array([ 3.33333333, 0.4 , 0.66666667, 0.6 ])
>>> L.legint(c, lbnd=-2)
array([ 7.33333333, 0.4 , 0.66666667, 0.6 ])
>>> L.legint(c, scl=2)
array([ 0.66666667, 0.8 , 1.33333333, 1.2 ])